Chemical Storage Stability Charts

Sulfur Compounds @ ~100 ppb				
	Bag Material			
Test Compound	ALTEF	Multi- Layer Foil		
n-Butyl mercaptan				
tert-Butyl mercaptan				
Carbon disulfide				
Carbonyl sulfide				
Diethyl disulfide				
Diethyl sulfide				
Dimethyl disulfide				
Dimethyl sulfide				
2,5-Dimethylthiophene				
Ethyl mercaptan				
Ethyl methyl sulfide				
2-Ethylthiophene				
Hydrogen Sulfide				
Isobutyl mercaptan				
Isopropyl mercaptan				
3-Methylthiophene				
Methyl mercaptan				
n-Propyl mercaptan				
Tetrahydrothiophene				
Thiophene				

Key:

- J	
	Recommended
	Suitable if analyzed within 24 hours
	Suitable for medium to high ppm levels*
	Not Suitable

* Multi-Layer Foil bags can be used to sample most VOCs at moderate to high ppm levels but are not recommended for low ppm levels or less due to background from the bag materials.

ALTEF bags are recommended for most VOCs if analyzed within 48 hours and for many sulfur compounds if analyzed within 24 hours.

Multi-layer foil bags are recommended for methane (CH_4) , hydrogen sulfide (H_2S) , carbon monoxide (CO), and carbon dioxide (CO_2) if analyzed within 24 hours.

VOCs @ 200-300 ppm					
	Bag Material				
Test Compound	ALTEF	Multi- Layer Foil	Tedlar [®]		
Acetone					
Acetonitrile					
Acrylonitrile					
Allyl chloride					
Benzene					
Bromoethane					
Butyl acetate					
Carbon tetrachloride					
Chloroform					
Carbon dioxide					
Carbon monoxide					
1,2-Dichloroethane					
Dichloropropane					
Ethyl acetate					
Ethylene					
Heptane					
Hexane					
Isooctane					
Isopropyl alcohol					
Methane					
Methyl ethyl ketone					
Methylene chloride					
Methyl tert-butyl ether					
Octane					
Perchloroethylene					
Propylene					
Propylene oxide					
Tetrahydrofuran					
Toluene					
1,1,1-Trichloroethane					
Trichloroethylene					
Vinylidene chloride					
p-Xylene					